أداة تخصيص استايل المنتدى
إعادة التخصيصات التي تمت بهذا الستايل

- الاعلانات تختفي تماما عند تسجيلك
- عضــو و لديـك مشكلـة فـي الدخول ؟ يــرجى تسجيل عضويه جديده و مراسلـة المديــر
او كتابــة مــوضـــوع فــي قســم الشكـاوي او مـراسلــة صفحتنـا على الفيس بــوك

تبسيط العبارات الجذرية

غمزة

الأمارلس
إنضم
27 أغسطس 2017
المشاركات
170,458
مستوى التفاعل
1,626
النقاط
113
من أهم الأهداف العامة و اهمية مادة الرياضيات في الصف الثالث المتوسط غرس العقيدة الدينية في نفوس الطلاب ، وجعل الوازع الديني أساس للسلوكيات والأفعال ، وتعزيز حب الله وتقوية الصلة بين الطالب وربه ، وإمداد الطلبة بالمعارف والمعلومات المناسبة لمرحلتهم العمرية ، وتشجيعهم على التأمل والبحث عن المعلومات والمعرفة ، وكذلك تربيتهم على أسس اجتماعية دينية قائمة على الحب والتعاون والقدرة على تحمل المسئوليات ، وأيضا غرس روح حب الوطن والإخلاص له وخدمته ، وتدريبهم على حسن الانتفاع بالوقت في الاستزادة بالعلم عن طريق القراءة ، بالإضافة إلى تقوية الوعي والتأهيل للمراحل القادمة .

وتتنوع الدروس والمواد وتختلف حول هذا المفهوم لينشأ جيلا قويا متسلحا بالعلم والإيمان ، ومن أهم الدروس التي يسعى الطلاب للبحث عنها في مادة الرياضيات درس تبسيط العبارات الجذرية ، والذي سيتم شرحه في المقال التالي مع الأمثلة .



الجذور التربيعية
في الدروس السابقة من الجبر تعلمنا ذلك :

32- = 3- ، 3- = 9

32=3⋅3=9

فـ 9 هي مربع 3 ، ومربع -3 هو 9 أيضا .

لذا يقال إن 3 و -3 هي الجذور التربيعية لـ 9 .

جميع الأرقام الحقيقية لها جذران مربعان ، جذر مربع واحد موجب وجذر مربع واحد سالب ، ويشار في بعض الأحيان إلى أن الجذر التربيعي الموجب يسمى باسم الجذر التربيعي الرئيسي ، وقد تم توضيح سبب وجود جذرين مربعين أعلاه ، ومن المعروف أن يكون ناتج ضرب الرقمين موجبًا إذا كان كلا الرقمين لهما نفس الإشارة كما هو الحال مع المربعات والجذور التربيعية .

أ2=أ⋅أ=(-أ)*(-أ) .

تتم كتابة الجذر التربيعي برمز جذري √ ويكون أسفله الرمز ” أ ” أو القيمة المراد إيجاد الجذر لها : فمثلا أ –√ = أ .

للإشارة إلى أننا نريد كلاً من الجذر التربيعي الموجب والسالب ، نضع الرمز ± أمام الجذر ، فمثلا : ± 9-√= ± 3 .

ملحوظات هامة

الصفر لديه الجذر التربيعي 0 ، 0√= 0 .
لا تحتوي الأرقام السالبة على جذور مربعة ، حقيقية لأن المربع إما موجب أو 0 .
إذا كان الجذر التربيعي لعدد صحيح هو عدد صحيح آخر ، فإن المربع يسمى مربع مثالي ، على سبيل المثال 25 هو مربع مثالي لأن ± 25–√= ± 5 ، ±25=±25 .
إذا كان المربع ليس مربعًا مثاليًا ، فالجذر التربيعي ليس عددًا صحيحًا مما يجب عليك تقريب الجذر التربيعي ± 3-√= ± 1.73205 … ≈ ± 1.7
الجذور المربعة للأرقام التي ليست مربعًا مثاليًا ، هذا يعني أنه لا يمكن كتابتها على أنها حاصل عدد صحيحين ، فتكتب بشكل عشري . [1]
خطوات تبسيط العبارات الجذرية
تبسيط الجذور التربيعية
يتم تبسيط العبارات الجذرية عن طريق كتابتها بصورة أبسط بحيث يصبح من السهل فهمها وتطبيقها في مسائل الرياضيات ، ويكون ذلك بعدة خطوات :

أولا : إذا كان العدد تحت الجذر زوجيا يتم تقسيمه على أصغر عدد أولي ممكن وهو العدد ( 2 ) ، أما إذا كان فرديا فيتم محاولة تقسيمه على ( 3 ) ، ولكن إذا لم نحصل على عددا صحيحا في ناتج القسمة نقوم بتجريب القسمة على الأعداد ( 2 ، 3 ، 5 ، 7 ، 11 ، 13 ، 17 ) ، حتى نجد لدينا عدد صحيح في ناتج القسمة .

مثال على ذلك = 98 √ = (2 ×49)√ .

ثانيا : وبعد ذلك يعاد كتابة الجذر التربيعي كمسألة من مسائل الضرب العادية ، ففي المثال قسمنا العدد 98 / 2 فكان الناتج هو 49 ، وبالتالي تم تبسيط العدد 98 إلى 49 * 2 .

98 √ = (2 ×49) √= (2 ×7 ×7)√ .

ثالثا : نكرر عملية التبسيط مرة أخرى على أحد العددين السابقين أسفل الجذر ، وبتجربة الأعداد السابقة كما ذكرنا وهي ( 2 ، 3 ، 5 ، 7 ، 11 ، 13 ، 17 ) ، سوف نجد أنه إذا قسمنا على 2 على سبيل المثال سوف نجد أن ناتج القسمة سوف يكون عددا غير صحيح ، لأنه لا يمكننا تقسيم 49 على 2 بدون باق ، ونفس الأمر عند القسمة على 3 أو 5 ، ولذلك يتم تقسيم العدد 49 على 7 للحصول على ناتج قسمة عددا صحيحا بدون باق ، فيتم تبسيط رقم 49 إلى 7 * 7 ، ويتم كتابة الجذر كما يلي :

98 √ = (2 ×49) √= (2 ×7 ×7)√ .

رابعا : بم أنه أصبح لدينا عددان متماثلان أسفل الجذر ، فإنه يصبح بإمكاننا تحويل العددان إلى عدد صحيح واحد خارج علامة الجذر ، وتظل باقي الأعداد تحت الجذر كما هي بالشكل التالي :

98 √= (2 ×49 ) √ = (2 ×7 ×7) √ = 7 * 2√ .

خامسا : ليس من الضروري أن نستمر في تحليل العدد تحت الجذر إلى عدد أصغر ، طالما أننا حصلنا على عددان متماثلان من عوامل العدد ، مثال على ذلك 16 √ يتم تبسيطه إلى (4 ×4) √، فإذا استمررنا بتحليله إلى عوامل أصغر سيصبح لدينا (2 ×2 ×2 ×2) √ ، أي أنه في النهاية سنصل إلى النتيجة نفسها وهي 4 ، ولكن سوف نضطر إلى زيادة الخطوات للوصول إلى نفس الناتج .

سادسا : يمكن تبسيط الجذر مرات عديدة وذلك إذا كانت الأعداد أسفل الجذر كبيرة ، عن طريق ضرب الأعداد الصحيحة التي تم استخراجها أسفل الجذر ، حتى يمكن الحصول على الناتج النهائي كما يلي :

180 √ = (2×90)√
180 √ = (2×2 ×45)√
180 √ = 2 * 45√
180 √ = 2 * (3×15)√
180√ = 2 * (3×3 ×5)
180√ = 2 ×3 * 5√
180 √ = 6 * 5 √

سابعا : إذا لم نتمكن من إيجاد عاملين متماثلين في هذه الحالة نقول أن هذا العبارة الجذرية لا يمكن تبسيطها ، وفي هذه الحالة يكون الجذر التربيعي هو نفسه أبسط صورة ممكنة ، ولا يمكن تبسيطه أكثر من ذلك ، مثال على ذلك عند تبسيط (70 ) √ يتم تبسيطه كما يلي (2 ×35) √ ، ومن ثم عند تبسيطه مرة أخرى يصبح (2 ×5 ×7) √ ، وهذه الأعداد الثلاثة أسفل الجذر هي أعداد أولية بالفعل لا يمكن تبسيطها إلى أقل منها والحصول على أعداد صحيحة عند تقسيمها لأصغر منها ، وبالتالي نقول أن 70 √ لا يمكن تبسيطه .
 

منار

Well-Known Member
إنضم
24 مايو 2014
المشاركات
24,900
مستوى التفاعل
396
النقاط
83
رد: تبسيط العبارات الجذرية

شكرآ جزيلا للنقل


.
مودتي
 

رقة الملائكة

سندريللا الفخامة
إنضم
19 فبراير 2013
المشاركات
161,354
مستوى التفاعل
33,160
النقاط
113
رد: تبسيط العبارات الجذرية

شكرا ع المجهود ..
 

قيصر الحب

::اصدقاء المنتدى و اعلى المشاركين ::
إنضم
2 أغسطس 2016
المشاركات
369,315
مستوى التفاعل
3,191
النقاط
113
رد: تبسيط العبارات الجذرية

دائما متميز في الانتقاء
سلمت على روعه طرحك
نترقب المزيد من جديدك الرائع
دمت ودام لنا روعه مواضيعك
 

حرف متمرد

Well-Known Member
إنضم
31 يناير 2018
المشاركات
380
مستوى التفاعل
33
النقاط
28
رد: تبسيط العبارات الجذرية

مدائن من الشكر لروحك الطيبه
ع النقـــــل الرائع والمميز
ارقى التحايا لروحك العذبه
 

الذين يشاهدون الموضوع الآن 1 ( الاعضاء: 0, الزوار: 1 )